
Package: rmoo (via r-universe)
September 13, 2024

Title Multi-Objective Optimization in R

Version 0.3.0

Date 2023-09-01

Description The 'rmoo' package is a framework for multi- and
many-objective optimization, which allows researchers and users
versatility in parameter configuration, as well as tools for
analysis, replication and visualization of results. The 'rmoo'
package was built as a fork of the 'GA' package by Luca
Scrucca(2017) <DOI:10.32614/RJ-2017-008> and implementing the
Non-Dominated Sorting Genetic Algorithms proposed by K. Deb's.

License GPL (>= 2)

Encoding UTF-8

Language es

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Collate 'AllClasses.R' 'associate.R' 'crowding_distance.R' 'data.R'
'generate_reference_points.R' 'geneticoperator.R'
'get_fixed_rowsum_integer_matrix.R' 'miscfun.R' 'AllGenerics.R'
'niching.R' 'non_dominated_fronts.R' 'parallel.R' 'utils.R'
'nsga.R' 'nsga2.R' 'nsga3.R' 'rnsga2.R'
'modified_crowding_distance.R' 'rmooControl.R'
'performance_metrics.R' 'reference_point_multi_layer.R'
'rmoo.R' 'rmoo_main.R' 'sharing.R' 'update_points.R' 'zzz.R'

Imports stats, utils, graphics, methods, foreach, GA, grDevices,
ggplot2, plotly

URL https://github.com/Evolutionary-Optimization-Laboratory/rmoo/

BugReports https://github.com/Evolutionary-Optimization-Laboratory/rmoo/issues/

Suggests testthat, covr, rgl, ecr, emoa, cdata, dplyr, reshape2,
parallel, doParallel, doRNG (>= 1.6)

Depends R (>= 2.10)

1

https://doi.org/10.32614/RJ-2017-008
https://github.com/Evolutionary-Optimization-Laboratory/rmoo/
https://github.com/Evolutionary-Optimization-Laboratory/rmoo/issues/

2 Contents

Repository https://evolutionary-optimization-laboratory.r-universe.dev

RemoteUrl https://github.com/evolutionary-optimization-laboratory/rmoo

RemoteRef HEAD

RemoteSha e6738e8d6cad540e262988ffbcd71fbf4ca8bcf5

Contents
algorithm-class . 3
associate . 3
crowding_distance . 4
generate_reference_points . 5
getCrowdingDistance . 6
getDummyFitness . 6
getFitness . 7
getMetrics . 8
getPopulation . 9
get_fixed_rowsum_integer_matrix . 10
kroA100 . 11
kroB100 . 11
kroC100 . 12
modifiedCrowdingDistance . 12
niching . 13
non_dominated_fronts . 14
nsga . 15
nsga-class . 18
nsga1-class . 19
nsga2 . 20
nsga2-class . 23
nsga3 . 24
nsga3-class . 27
numberOrNAOrMatrix-class . 28
performance_metrics . 29
plot . 30
print . 31
progress . 32
reference_point_multi_layer . 33
rmooControl . 34
rmooMonitor . 36
rmoo_Crossover . 37
rmoo_main . 38
rmoo_Mutation . 41
rmoo_Population . 42
rmoo_Selection . 43
rnsga2 . 44
rnsga2-class . 49
scale_reference_directions . 49
sharing . 50

algorithm-class 3

summary . 51
update_points . 52

Index 54

algorithm-class Virtual Parent Class Algorithm

Description

It will use when other algorithms are implemented. Equivalent to a Abstract class in other lan-
guages.

associate Association Operation in Non-Dominated Genetic Algorithms III

Description

Function that associates each member of the population with a reference point. The function cal-
culates the perpendicular distance of each individual from each of the reference lines. This code
section corresponds to Algorithm 3 of the referenced paper.

Usage

associate_to_niches(object, utopian_epsilon = 0)
compute_perpendicular_distance(x, y)
compute_niche_count(n_niches, niche_of_individuals)

Arguments

object An object of class "nsga3".
utopian_epsilon

The epsilon used for decrease the ideal point to get the utopian point.

x Individuals to calculate their niche.

y Reference points.

n_niches Number of reference points.
niche_of_individuals

The niche count of individuals, except the last front.

Value

Returns a list with the niche count of individuals and the distances between them.

Author(s)

Francisco Benitez

4 crowding_distance

References

J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8,
pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567.

K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints," in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

crowding_distance Calculation of Crowding Distance

Description

A Crowded-comparison approach.

Usage

crowding_distance(object, nObj)

Arguments

object, nObj An object of class ’nsga2’, usually resulting from a call to function nsga2. Fit-
ness Function Objective Numbers

Details

The crowded-comparison operator guides the selection process at the various stages of the algorithm
toward a uniformly spread-out Pareto-optimal front

Value

A vector with the crowding-distance between individuals of a population.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ’A fast and elitist multiobjective genetic algorithm:
NSGA-II,’ in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April
2002, doi: 10.1109/4235.996017.

See Also

non_dominated_fronts()

generate_reference_points 5

generate_reference_points

Determination of Reference Points on a Hyper-Plane

Description

A implementation of Das and Dennis’s Reference Points Generation.

Usage

generate_reference_points(m, h, scaling = NULL)

Arguments

m, h, scaling Number of reference points ’h’ in M-objective problems, and scaling that is the
scale on which the points are distributed.

Details

The implemented Reference Point Generation is based on the Das and Dennis’s systematic approach
that places points on a normalized hyper-plane which is equally inclined to all objective axes and
has an intercept of one on each axis.

Value

A matrix with the reference points uniformly distributed.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb and H. Jain, ’An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,’ in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

Das, Indraneel & Dennis, J. (2000). Normal-Boundary Intersection: A New Method for Generating
the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on Optimiza-
tion. 8. 10.1137/S1052623496307510.

See Also

non_dominated_fronts() and get_fixed_rowsum_integer_matrix()

6 getDummyFitness

getCrowdingDistance Accessor methods to the crowding distance for NSGA-II results

Description

Accessor methods to the crowding distance for NSGA-II results

Usage

getCrowdingDistance(obj)

S4 method for signature 'nsga2'
getCrowdingDistance(obj)

Arguments

obj an object resulting from the execution of NSGA-II algorithm

Value

Returns a vector with the crowding distances of class nsga2. See nsga2 for a description of available
slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object resulting from the execution of the NSGA-II algorithm.
#
getCrowdingDistance(out)
#

getDummyFitness Accessor methods to the dummy fitness for NSGA-I results

Description

Accessor methods to the dummy fitness for NSGA-I results

Usage

getDummyFitness(obj)

S4 method for signature 'nsga1'
getDummyFitness(obj)

getFitness 7

Arguments

obj an object resulting from the execution of NSGA-I algorithm

Value

Returns a matrix with the dummy fitness of class nsga1. See nsga1 for a description of available
slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object resulting from the execution of the NSGA-I algorithm.
#
getDummyFitness(out)
#

getFitness Accessor methods to the fitness for rmoo results

Description

Accessor methods to the fitness for rmoo results

Usage

getFitness(obj)

Arguments

obj an object resulting from the execution of NSGA-I, NSGA-II or NSGA-III algo-
rithm

Value

Prints the resulting fitness and when the result of the method-call is assigned to a variable, the fitness
is stored as a data frame. See nsga1 nsga2, nsga3 for a description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

8 getMetrics

Examples

Where 'out' is an object resulting from the execution of the rmoo.
#
fitness_result <- getFitness(out)
#
fitness_result

getMetrics Accessor methods to the metrics evaluated during execution

Description

Accessor methods to the metrics evaluated during execution

Usage

getMetrics(obj)

S4 method for signature 'nsga'
getMetrics(obj)

Arguments

obj an object resulting from the execution of NSGA-I, NSGA-II or NSGA-III algo-
rithm. During the execution of the performance metrics must be evaluated.

Value

A dataframe with performance metrics evaluated iteration by iteration.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object resulting from the execution of the rmoo.
#
metrics_result <- getMetrics(out)
#
metrics_result

getPopulation 9

getPopulation Accessor methods to the population for rmoo results

Description

Accessor methods to the population for rmoo results

Usage

getPopulation(obj)

S4 method for signature 'nsga'
getPopulation(obj)

S4 method for signature 'nsga'
getFitness(obj)

Arguments

obj an object resulting from the execution of NSGA-I, NSGA-II or NSGA-III algo-
rithm

Value

Prints the resulting population and when the result of the method-call is assigned to a variable, the
population is stored as a data frame. See nsga1 nsga2, nsga3 for a description of available slots
information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object resulting from the execution of rmoo.
#
population_result <- getPopulation(out)
#
population_result

10 get_fixed_rowsum_integer_matrix

get_fixed_rowsum_integer_matrix

Determine the division points on the hyperplane

Description

Implementation of the recursive function in Generation of Reference points of Das and Dennis..

Usage

get_fixed_rowsum_integer_matrix(m, h)

Arguments

m, h Number of reference points ’h’ in M-objective problems

Details

The implemented Reference Point Generation is based on the Das and Dennis’s systematic approach
that places points on a normalized hyper-plane which is equally inclined to all objective axes and
has an intercept of one on each axis.

Value

A matrix with the reference points uniformly distributed.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb and H. Jain, ’An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,’ in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

Das, Indraneel & Dennis, J.. (2000). Normal-Boundary Intersection: A New Method for Gen-
erating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on
Optimization. 8. 10.1137/S1052623496307510.

See Also

non_dominated_fronts() and generate_reference_points()

kroA100 11

kroA100 KROA100

Description

A dataset containing the coord and section of 100 cities

Usage

kroA100

Format

A data frame with 100 rows and 2 variables:

COORD City Coordinates

SECTION City Section

References

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA journal on computing,
3(4), 376-384

kroB100 KROB100

Description

A dataset containing the coord and section of 100 cities

Usage

kroB100

Format

A data frame with 100 rows and 2 variables:

COORD City Coordinates

SECTION City Section

References

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA journal on computing,
3(4), 376-384

12 modifiedCrowdingDistance

kroC100 KROC100

Description

A dataset containing the coord and section of 100 cities

Usage

kroC100

Format

A data frame with 100 rows and 2 variables:

COORD City Coordinates

SECTION City Section

References

Reinelt, G. (1991). TSPLIB—A traveling salesman problem library. ORSA journal on computing,
3(4), 376-384

modifiedCrowdingDistance

Calculation of Modified Crowding Distance

Description

A Crowded-comparison approach.

Usage

modifiedCrowdingDistance(
object,
epsilon,
weights = NULL,
normalization = "front",
extreme_points_as_ref_dirs = FALSE

)

Arguments

object, nObj An object of class ’nsga2’, usually resulting from a call to function nsga2. Fit-
ness Function Objective Numbers

niching 13

Details

The crowded-comparison operator guides the selection process at the various stages of the algorithm
toward a uniformly spread-out Pareto-optimal front

Value

A vector with the crowding-distance between individuals of a population.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

Kalyanmoy Deb and J. Sundar. 2006. Reference point based multi-objective optimization using
evolutionary algorithms. In Proceedings of the 8th annual conference on Genetic and evolutionary
computation (GECCO ’06). Association for Computing Machinery, New York, NY, USA, 635–642.
doi: 10.1145/1143997.1144112

See Also

rnsga2()

niching Niche-Preservation Operation

Description

Generation of niche, by associating reference points to population members

Usage

niching(pop, n_remaining, niche_count, niche_of_individuals, dist_to_niche)

Arguments

pop Last Front Population

n_remaining Number of points to choose

niche_count Niche count of individuals with the reference point
niche_of_individuals

Count of the closest reference point to the last front objective values

dist_to_niche Distance between closest reference point to last front objective values

Details

Niching procesure is a algorithms proposed by K. Deb and H. Jain in 2013.

14 non_dominated_fronts

Value

Returns the association of reference points to each individual in the population.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb and H. Jain, ’An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints,’ in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. doi: 10.32614/RJ-2017-008

Felix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner Gardner, Marc Parizeau,
and Christian Gagne. 2012. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13,
1 (January 2012), 2171–2175.

See Also

associate_to_niches(), PerformScalarizing()

non_dominated_fronts Calculate of Non-Dominated Front

Description

A fast approach for calculate Non-Dominated Fronts.

Usage

non_dominated_fronts(object)

Arguments

object An object of class ’nsga’, usually resulting from a call to function nsga, nsga2
and nsga3.

Details

Function to determine the non-dominated fronts of a population and the aptitude value.

Value

A list with ’non-dominated fronts’ and ’occupied positions’ on the fronts.

nsga 15

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ’A fast and elitist multiobjective genetic algorithm:
NSGA-II,’ in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April
2002, doi: 10.1109/4235.996017.

See Also

nsga(), nsga2() and nsga3()

nsga Non-Dominated Sorting in Genetic Algorithms

Description

Minimization of a fitness function using Non-Dominated Genetic algorithms (NSGA). Local search
using general-purpose optimisation algorithms can be applied stochastically to exploit interesting
regions.

Usage

nsga(
type = c("binary", "real-valued", "permutation"),
fitness,
...,
lower,
upper,
nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
popSize = 50,
nObj = NULL,
dshare,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,

16 nsga

seed = NULL
)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:

"binary" for binary representations of decision variables.
"real-valued" for optimization problems where the decision variables are

floating-point representations of real numbers.
"permutation" for problems that involves reordering of a list of objects.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing
its “fitness”.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search.

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.

nBits a value specifying the number of bits to be used in binary encoded optimizations.

population an R function for randomly generating an initial population. See rmoo_Population()
for available functions.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See rmoo_Selection() for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See rmoo_Crossover()
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See rmoo_Mutation() for avail-
able functions.

popSize the population size.

nObj number of objective in the fitness function.

dshare the maximun phenotypic distance allowed between any two individuals to be-
come members of a niche.

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

maxiter the maximum number of iterations to run before the NSGA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the NSGA is stopped.

nsga 17

maxFitness the upper bound on the fitness function after that the NSGA search is interrupted.

names a vector of character strings providing the names of decision variables.

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

monitor a logical or an R function which takes as input the current state of the nsga-
class object and show the evolution of the search. By default, for interactive
sessions the function rmooMonitor prints the average and best fitness values at
each iteration. If set to plot these information are plotted on a graphical device.
Other functions can be written by the user and supplied as argument. In non
interactive sessions, by default monitor = FALSE so any output is suppressed.

summary If there will be a summary generation after generation.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a NSGA search. Note that if parallel
computing is required, the doRNG package must be installed.

Details

The Non-dominated genetic algorithms is a meta-heuristic proposed by N. Srinivas and K. Deb
in 1994. The purpose of the algorithms is to find an efficient way to optimize multi-objectives
functions (two or more).

Value

Returns an object of class nsga1-class. See nsga1 for a description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

N. Srinivas and K. Deb, "Multiobjective Optimization Using Nondominated Sorting in Genetic Al-
gorithms, in Evolutionary Computation, vol. 2, no. 3, pp. 221-248, Sept. 1994, doi: 10.1162/evco.1994.2.3.221.

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. doi: 10.32614/RJ-2017-008

See Also

nsga2(), nsga3()

Examples

#Example
#Two Objectives - Real Valued
zdt1 <- function (x) {
if (is.null(dim(x))) {
x <- matrix(x, nrow = 1)

}

18 nsga-class

n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))

}

#Not run:
Not run:
result <- nsga(type = "real-valued",

fitness = zdt1,
lower = c(0,0),
upper = c(1,1),
popSize = 100,
nObj = 2,
dshare = 1,
monitor = FALSE,
maxiter = 500)

End(Not run)

nsga-class Virtual Class ’nsga’

Description

The ’nsga’ class is the parent superclass of the nsga1, nsga2, and nsga3 classes

Slots

call an object of class ’call’ representing the matched call.

type a character string specifying the type of genetic algorithm used.

lower a vector providing for each decision variable the lower bounds of the search space in case of
real-valued or permutation encoded optimisations.

upper a vector providing for each decision variable the upper bounds of the search space in case
of real-valued or permutation encoded optimizations.

nBits a value specifying the number of bits to be used in binary encoded optimizations.

names a vector of character strings providing the names of decision variables (optional).

nvars a

popSize the population size.

front Rank of individuals on the non-dominated front.

f Front of individuals on the non-dominated front.

iter the actual (or final) iteration of NSGA search.

run the number of consecutive generations without any improvement in the best fitness value before
the NSGA is stopped.

maxiter the maximum number of iterations to run before the NSGA search is halted.

nsga1-class 19

suggestions a matrix of user provided solutions and included in the initial population.

population the current (or final) population.

pcrossover the crossover probability.

pmutation the mutation probability.

fitness the values of fitness function for the current (or final) population.

summary a matrix of summary statistics for fitness values at each iteration (along the rows).

fitnessValue the best fitness value at the final iteration.

solution the value(s) of the decision variables giving the best fitness at the final iteration.

execution_time a

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

showClass('nsga')

nsga1-class Class ’nsga1’

Description

The class ’nsga1’ is instantiated within the execution of rmoo and will be returned as a result of it.
All data generated during execution will be stored in it.

Slots

dumFitness a large dummy fitness value assigned to individuals from the nondominated front.

dShare the maximun phenotypic distance allowed between any two individuals to become mem-
bers of a niche.

deltaDummy value to decrease the dummy fitness of individuals by non-dominated fronts.

Examples

showClass('nsga1')

20 nsga2

nsga2 Non-Dominated Sorting in Genetic Algorithms II

Description

Minimization of a fitness function using non-dominated sorting genetic algorithms - II (NSGA-IIs).
Multiobjective evolutionary algorithms

Usage

nsga2(
type = c("binary", "real-valued", "permutation"),
fitness,
...,
lower,
upper,
nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
popSize = 50,
nObj = NULL,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
parallel = FALSE,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,
seed = NULL

)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:
’binary’ for binary representations of decision variables.
’real-valued’ for optimization problems where the decision variables are floating-

point representations of real numbers.
’permutation’ for problems that involves reordering of a list of objects.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing
its ’fitness’.

nsga2 21

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.

nBits a value specifying the number of bits to be used in binary encoded optimizations

population an R function for randomly generating an initial population. See rmoo_Population()
for available functions.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See rmoo_Selection() for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See rmoo_Crossover()
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See rmoo_Mutation() for avail-
able functions.

popSize the population size.

nObj number of objective in the fitness function.

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

maxiter the maximum number of iterations to run before the NSGA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the NSGA is stopped

maxFitness the upper bound on the fitness function after that the NSGA search is interrupted.

names a vector of character strings providing the names of decision variables.

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

parallel An optional argument which allows to specify if the NSGA-II should be run
sequentially or in parallel.

monitor a logical or an R function which takes as input the current state of the nsga-
class object and show the evolution of the search. By default, for interactive
sessions the function rmooMonitor prints the average and best fitness values at
each iteration. If set to plot these information are plotted on a graphical device.
Other functions can be written by the user and supplied as argument. In non
interactive sessions, by default monitor = FALSE so any output is suppressed.

summary If there will be a summary generation after generation.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a NSGA search. Note that if parallel
computing is required, the doRNG package must be installed.

22 nsga2

Details

The Non-dominated genetic algorithms II is a meta-heuristic proposed by K. Deb, A. Pratap, S.
Agarwal and T. Meyarivan in 2002. The purpose of the algorithms is to find an efficient way to
optimize multi-objectives functions (two or more).

Value

Returns an object of class nsga2-class. See nsga2 for a description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ’A fast and elitist multiobjective genetic algorithm:
NSGA-II,’ in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April
2002, doi: 10.1109/4235.996017.

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. doi: 10.32614/RJ-2017-008

See Also

nsga(), nsga3()

Examples

#Example
#Two Objectives - Real Valued
zdt1 <- function (x) {
if (is.null(dim(x))) {

x <- matrix(x, nrow = 1)
}
n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
}

#Not run:
Not run:
result <- nsga2(type = "real-valued",

fitness = zdt1,
lower = c(0,0),
upper = c(1,1),
popSize = 100,
nObj = 2,
monitor = FALSE,
maxiter = 500)

End(Not run)

nsga2-class 23

#Example 2
#Three Objectives - Real Valued
dtlz1 <- function (x, nobj = 3){

if (is.null(dim(x))) {
x <- matrix(x, 1)

}
n <- ncol(x)
y <- matrix(x[, 1:(nobj - 1)], nrow(x))
z <- matrix(x[, nobj:n], nrow(x))
g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
tmp <- t(apply(y, 1, cumprod))
tmp <- cbind(t(apply(tmp, 1, rev)), 1)
tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
f <- tmp * tmp2 * 0.5 * (1 + g)
return(f)

}

#Not run:
Not run:
result <- nsga2(type = "real-valued",

fitness = dtlz1,
lower = c(0,0,0),
upper = c(1,1,1),
popSize = 92,
nObj = 3,
monitor = FALSE,
maxiter = 500)

End(Not run)

nsga2-class Class ’nsga2’

Description

The class ’nsga2’ is instantiated within the execution of rmoo and will be returned as a result of it.
All data generated during execution will be stored in it.

Slots

crowdingDistance Crowding-comparison approach to estimate of the perimeter of the cuboid
formed by using the nearest neighbors as the vertices.

Examples

showClass('nsga2')

24 nsga3

nsga3 Non-Dominated Sorting in Genetic Algorithms III

Description

Minimization of a fitness function using non-dominated sorting genetic algorithms - III (NSGA-
IIIs). Multiobjective evolutionary algorithms

Usage

nsga3(
type = c("binary", "real-valued", "permutation"),
fitness,
...,
lower,
upper,
nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
popSize = 50,
nObj = NULL,
n_partitions = NULL,
pcrossover = 0.8,
pmutation = 0.1,
reference_dirs = generate_reference_points,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
parallel = FALSE,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,
seed = NULL

)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:

"binary" for binary representations of decision variables.
"real-valued" for optimization problems where the decision variables are

floating-point representations of real numbers.
"permutation" for problems that involves reordering of a list of objects.

nsga3 25

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing
its “fitness”.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.

nBits a value specifying the number of bits to be used in binary encoded optimizations.

population an R function for randomly generating an initial population. See rmoo_Population()
for available functions.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See rmoo_Selection() for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See rmoo_Crossover()
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See rmoo_Mutation() for avail-
able functions.

popSize the population size.

nObj number of objective in the fitness function.

n_partitions Partition number of generated reference points

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

reference_dirs Function to generate reference points using Das and Dennis approach or matrix
with supplied reference points.

maxiter the maximum number of iterations to run before the NSGA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the NSGA is stopped

maxFitness the upper bound on the fitness function after that the NSGA search is interrupted.

names a vector of character strings providing the names of decision variables.

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

parallel An optional argument which allows to specify if the NSGA-II should be run
sequentially or in parallel.

monitor a logical or an R function which takes as input the current state of the nsga-
class object and show the evolution of the search. By default, for interactive
sessions the function rmooMonitor prints the average and best fitness values at

26 nsga3

each iteration. If set to plot these information are plotted on a graphical device.
Other functions can be written by the user and supplied as argument. In non
interactive sessions, by default monitor = FALSE so any output is suppressed.

summary If there will be a summary generation after generation.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a NSGA search. Note that if parallel
computing is required, the doRNG package must be installed.

Details

The Non-dominated genetic algorithms III is a meta-heuristic proposed by K. Deb and H. Jain
in 2013. The purpose of the algorithms is to find an efficient way to optimize multi-objectives
functions (more than three).

Value

Returns an object of class nsga3-class. See nsga3 for a description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints," in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. doi: 10.32614/RJ-2017-008

See Also

nsga(), nsga2()

Examples

#Example 1
#Two Objectives - Real Valued
zdt1 <- function (x) {
if (is.null(dim(x))) {
x <- matrix(x, nrow = 1)

}
n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))

}

#Not run
Not run:

nsga3-class 27

result <- nsga3(type = "real-valued",
fitness = zdt1,
lower = c(0,0),
upper = c(1,1),
popSize = 100,
nObj = 2,
n_partitions = 100,
monitor = FALSE,
maxiter = 500)

End(Not run)

#Example 2
#Three Objectives - Real Valued
dtlz1 <- function (x, nobj = 3, ...){

if (is.null(dim(x))) {
x <- matrix(x, 1)

}
n <- ncol(x)
y <- matrix(x[, 1:(nobj - 1)], nrow(x))
z <- matrix(x[, nobj:n], nrow(x))
g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
tmp <- t(apply(y, 1, cumprod))
tmp <- cbind(t(apply(tmp, 1, rev)), 1)
tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
f <- tmp * tmp2 * 0.5 * (1 + g)
return(f)

}

#Not Run
Not run:
result <- nsga3(type = "real-valued",

fitness = dtlz1,
lower = c(0,0,0),
upper = c(1,1,1),
popSize = 92,
nObj = 3,
n_partitions = 12,
monitor = FALSE,
maxiter = 500)

End(Not run)

nsga3-class Class ’nsga3’

Description

The class ’nsga3’ is instantiated within the execution of rmoo and will be returned as a result of it.
All data generated during execution will be stored in it.

28 numberOrNAOrMatrix-class

Slots

ideal_point Nadir point estimate used as lower bound in normalization.

worst_point Worst point generated over generations.

smin Index used to obtain the extreme points.

extreme_points are selected using the ASF in the (PerformScalarizing()). Necessary in the
nadir point generation.

worst_of_population The worst individuals generated by objectives in the current generation.

worst_of_front The worst individuals in the first front generated by objectives in the current
generation.

nadir_point Nadir point estimate used as upper bound in normalization.

reference_points NSGA-III uses a predefined set of reference points to ensure diversity in ob-
tained solutions. The chosen refenrece points can be predefined in structured manner or sup-
plied by the user. We use the Das and Dennis procedure.

Examples

showClass('nsga3')

numberOrNAOrMatrix-class

Virtual Class ’numberOrNAOrMatrix - Simple Class for subassigment
Values’

Description

The class ’numberOrNAOrMatrix’ is a simple class union (setClassUnion()) of ’numeric’, ’logi-
cal’, ’logical’ and ’matrix’.

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

showClass('numberOrNAOrMatrix')

performance_metrics 29

performance_metrics Objective Values performance metrics

Description

Functions to evaluate the quality of the results obtained by the algorithms, evaluating their diversity
and convergence, providing or not some parameters to compare.

Usage

generational_distance(front, true_pareto_front, p, inverted, plus)

Arguments

front a N×M matrix where N is the number of points and M is the number of objec-
tives.

true_pareto_front

a N×M matrix where N is the number of points and M is the number of objec-
tives.

p is the power in which the normalized distance is calculated.

inverted if TRUE then computes IGD.

plus if TRUE then computes the GD+.

Value

A vector with the measurement metric.

Author(s)

Francisco Benitez

References

Lamont, G., & Veldhuizen, D.V. (1999). Multiobjective evolutionary algorithms: classifications,
analyses, and new innovations.

30 plot

plot Methods for Function ’plot’ in Package ’rmoo’

Description

Method used to visualize the fitness of the individuals during the execution of the algorithms.

Usage

plot(x, y, ...)

S4 method for signature 'nsga,missing'
plot(x, y = "missing", type = c("scatter", "pcp", "heatmap", "polar"), ...)

S4 method for signature 'nsga1,missing'
plot(x, y = "missing", type = c("scatter", "pcp", "heatmap", "polar"), ...)

S4 method for signature 'nsga2,missing'
plot(x, y = "missing", type = c("scatter", "pcp", "heatmap", "polar"), ...)

S4 method for signature 'nsga3,missing'
plot(x, y = "missing", type = c("scatter", "pcp", "heatmap", "polar"), ...)

S4 method for signature 'rnsga2,missing'
plot(x, y = "missing", type = c("scatter", "pcp", "heatmap", "polar"), ...)

Arguments

x, y Objects of either class nsga1, nsga2, or nsga3.

... other arguments passed on to methods

"optimal" An argument passed to the "scatter" plot. A matrix of dimension
equal to the fitness with which they are compared. This value can only be
compared in 2 and 3 dimensional "scatter" plots.

"individual" An argument passed to the "heatmap" and "polar" plots. A vector
that represents the fitness of the individuals to be displayed.

type Type of graph to draw, the graphs can be of the type "scatter", "pcp", "heatmap",
or "polar"

Details

The following plots are available:

• "Scatter Plot"

• "Parallel Coordinate Plot"

• "Heat Map"

• "Polar Coordinate"

print 31

Value

A graph of the evaluated type.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object of class nsga1, nsga2, or nsga3.
The plot method will by default plot a scatter plot.
#
plot(out)
#
The Parallel Coordinate Plot will be plotted if "pcp" is passed as a parameter to "type".
#
plot(out, type="pcp")
#
A heat map plot will be plotted if "heatmap" is passed as a parameter to "type"
and a vector with the individuals to plot to "individual"
#
plot(out, type = "heatmap", individual = c(1:5))
#
A polar coordinate plot will be plotted if "polar" is passed as a parameter to "type"
and a vector with the individuals to plot to "individual"
#
plot(out, type = "polar", individual = c(1:5))

print Methods for Function ’print’ in Package ’rmoo’.

Description

Method used to print the slots and relevant values of the object.

Usage

print(x, ...)

S4 method for signature 'nsga'
print(x, ...)

S4 method for signature 'nsga1'
print(x, ...)

S4 method for signature 'nsga3'
print(x, ...)

32 progress

Arguments

x Objects of either class nsga1, nsga2, or nsga3.

... other arguments passed on to methods

Value

Print the slots and relevant values of the object.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object of class nsga1, nsga2, or nsga3
#
print(out)

progress Methods for Function ’progress’ in Package ’rmoo’

Description

Method used to save the progress of the evaluation results, similar to the summary method. Passing
additional arguments to the progress method evaluates performance metrics per iteration. This
method cannot be called outside of rmoo execution.

Usage

progress(object, ...)

S4 method for signature 'nsga'
progress(object, ...)

S4 method for signature 'nsga1'
progress(object, ...)

S4 method for signature 'nsga2'
progress(object, ...)

S4 method for signature 'nsga3'
progress(object, ...)

reference_point_multi_layer 33

Arguments

object Objects of either class nsga1, nsga2, or nsga3.

... other arguments passed on to methods. Passing "reference_dirs" as argu-
ments will evaluate the performance metrics Hypervolumen, Generational Dis-
tance, and Inverse Generational Distance.

Value

A list of length equal to the number of iterations, where the progress made during execution is
saved.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

Examples

Where 'out' is an object of class nsga1, nsga2, or nsga3, and callArgs are
the additional arguments passed when calling the rmoo function, for the
evaluation of performance metrics, reference points are expected to be passed
as an argument to reference_dirs.
#
progress(object, callArgs)
#

reference_point_multi_layer

Determination of Multi-layer Reference Points

Description

A implementation of Multi-layer Reference Points Generation.

Usage

reference_point_multi_layer(...)

Arguments

... The different layers provided by the user

Details

The Multi-layer reference point implementation is based on Blank and Deb’s pymoo library, the
approach generates different layers of references point at different scales, provided by the user.

34 rmooControl

Value

A matrix with the multi-layer reference points

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8,
pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567.

Das, Indraneel & Dennis, J. (2000). Normal-Boundary Intersection: A New Method for Generating
the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on Optimiza-
tion. 8. 10.1137/S1052623496307510.

See Also

generate_reference_points() and get_fixed_rowsum_integer_matrix()

rmooControl A function for setting or retrieving defaults non-dominated genetic op-
erators

Description

Default settings for non-dominated genetic operators used in the ’rmoo’ package.

Usage

rmooControl(...)

Arguments

... no arguments, a single character vector, or a named list with components.

Details

If the function is called with no arguments returns the current default settings, i.e., a list with the
following default components:

• "binary"

– population = "rmoobin_Population"

– selection = "rmoobin_tourSelection"

– crossover = "rmoobin_spCrossover"

– mutation = "rmoobin_raMutation"

• "real-valued"

rmooControl 35

– population = "rmooreal_Population"

– selection = "rmooreal_tourSelection"

– crossover = "rmooreal_sbxCrossover"

– mutation = "rmooreal_polMutation"

• "permutation"

– population = "rmooperm_Population"

– selection = "rmooperm_tourSelection"

– crossover = "rmooperm_oxCrossover"

– mutation = "rmooperm_simMutation"

• "discrete"

– population = "rmooint_Population"

– selection = "rmooint_tourSelection"

– crossover = "rmooint_uxCrossover"

– mutation = "rmooint_uxMutation"

• "eps" = the tolerance value used by the package functions. By default set at sqrt(.Machine$double.eps).

The function may be called with a single string specifying the name of the component. In this case
the function returns the current default settings.

To change the default values, a named component must be followed by a single value (in case of
"eps") or a list of component(s) specifying the name of the function for a genetic operator. See the
Examples section.

Value

If the argument list is empty the function returns the current list of values. If the argument list is not
empty, the returned list is invisible.

Note

The parameter values set via a call to this function will remain in effect for the rest of the session,
affecting the subsequent behaviour of the functions for which the given parameters are relevant.

Author(s)

Francisco Benitez

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga2(), rnsga2() and nsga3()

36 rmooMonitor

Examples

get and save defaults
defaultControl <- rmooControl()
print(defaultControl)
get current defaults only for real-valued search
rmooControl("real-valued")
set defaults for selection operator of real-valued search
rmooControl("real-valued" = list(selection = "rmooreal_lrSelection"))
rmooControl("real-valued")
set defaults for selection and crossover operators of real-valued search
rmooControl("real-valued" = list(selection = "rmooreal_lrSelection",

crossover = "rmooreal_spCrossover"))
rmooControl("real-valued")
restore defaults
rmooControl(defaultControl)
rmooControl()

rmooMonitor Monitor the execution of rmoo

Description

Functions to plotting fitness values at each iteration of a search for the ’rmoo’ package.

Usage

rmooMonitor(object, number_objectives, ...)

Arguments

object an object of class nsga, nsga2 or nsga3, usually resulting from a call to function
nsga, nsga2 or nsga3, respectively.

number_objectives

numbers of objective values of the function to evaluate.

... further arguments passed to or from other methods.

Value

These functions plot the fitness values of the current step of the nsga3 on the console.
By default, rmooMonitor is called in interactive sessions by nsga, nsga2, or nsga3.
The function can be modified by the user to plot or print the values it considers by iteration.

Author(s)

Francisco Benitez

rmoo_Crossover 37

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga(), nsga2() and nsga3()

rmoo_Crossover Crossover operators in non-dominated genetic algorithms

Description

Functions implementing crossover non-dominated genetic operator.

Usage

rmoo_spCrossover(object, parents)

rmoobin_spCrossover(object, parents)

rmooreal_spCrossover(object, parents)
rmooreal_sbxCrossover(object, parents, nc = 20)

rmooperm_oxCrossover(object, parents)

Arguments

object An object of class "nsga", "nsga2" and "nsga3", usually resulting from a call
to function nsga, nsga2 and nsga3.

parents A two-rows matrix of values indexing the parents from the current population.

nc Parameters of non-dominated genetic operators.

Value

Return a list with two elements:

children a matrix of dimension 2 times the number of decision variables containing the
generated offsprings;

fitness a vector of length 2 containing the fitness values for the offsprings. A value NA
is returned if an offspring is different (which is usually the case) from the two
parents.

Author(s)

Francisco Benitez

38 rmoo_main

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga(), nsga2() and nsga3()

rmoo_main R Multi-Objective Optimization Main Function

Description

Main function of rmoo, based on the parameters it will call the different algorithms implemented
in the package. Optimization algorithms will minimize a fitness function. For more details of the
algorithms see nsga2(), nsga3(), rnsga2().

Usage

rmoo(
type = c("binary", "real-valued", "permutation", "discrete"),
algorithm = c("NSGA-II", "NSGA-III", "R-NSGA-II"),
fitness,
...,
lower,
upper,
nBits,
nvars,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
pcrossover = 0.8,
pmutation = 0.1,
popSize = 50,
maxiter = 100,
nObj = NULL,
names = NULL,
suggestions = NULL,
monitor = if (interactive()) rmooMonitor else FALSE,
parallel = FALSE,
summary = FALSE,
seed = NULL,
reference_dirs = NULL,
epsilon = 0.001,
normalization = NULL,
extreme_points_as_ref_dirs = FALSE,

rmoo_main 39

weights = NULL
)

Arguments

... argument in which all the values necessary for the configuration will be passed
as parameters. The user is encouraged to see the documentations of nsga2(),
rnsga2(), nsga3() in which the necessary parameters for each algorithm are
cited, in addition, the chosen strategy to execute must be passed as an argument.
This can be seen more clearly in the examples.

Details

Multi- and Many-Optimization of a fitness function using Non-dominated Sorting Genetic Algo-
rithms. The algorithms currently implemented by rmoo are: NSGA-II, NSGA-III and R-NSGA-II

The Non-dominated genetic algorithms II (NSGA-II) is a meta-heuristic proposed by K. Deb, A.
Pratap, S. Agarwal and T. Meyarivan in 2002. The purpose of the algorithms is to find an efficient
way to optimize multi-objectives functions (two or more).

The Non-dominated genetic algorithms III (NSGA-III) is a meta-heuristic proposed by K. Deb
and H. Jain in 2013. The purpose of the algorithms is to find an efficient way to optimize multi-
objectives functions (more than three).

The R-NSGA-II is a meta-heuristic proposed by K. Deb and J. Sundar in 2006. It is a modification
of NSGA-II based on reference points in which the decision-maker supplies one or more preference
points and a weight vector that will guide the solutions towards regions desired by the user.

Value

Returns an object of class nsga2-class, nsga3-class or rnsga2-class. See nsga2, rnsga2, nsga3 for a
description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206. doi: 10.32614/RJ-2017-008

Kalyanmoy Deb and J. Sundar. 2006. Reference point based multi-objective optimization using
evolutionary algorithms. In Proceedings of the 8th annual conference on Genetic and evolutionary
computation (GECCO ’06). Association for Computing Machinery, New York, NY, USA, 635–642.
doi: 10.1145/1143997.1144112

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, ’A fast and elitist multiobjective genetic algorithm:
NSGA-II,’ in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April
2002, doi: 10.1109/4235.996017.

K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints," in

40 rmoo_main

IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

See Also

nsga2(), rnsga2(), nsga3()

Examples

#Example 1
#Two Objectives - Real Valued
zdt1 <- function (x) {
if (is.null(dim(x))) {
x <- matrix(x, nrow = 1)

}
n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))

}

#Not run:
Not run:
result <- rmoo(type = "real-valued",

fitness = zdt1,
algorithm = "NSGA-II",
lower = c(0,0),
upper = c(1,1),
popSize = 100,
nObj = 2,
monitor = FALSE,
maxiter = 500)

End(Not run)

#Example 2
#Three Objectives - Real Valued
dtlz1 <- function (x, nobj = 3){

if (is.null(dim(x))) {
x <- matrix(x, 1)

}
n <- ncol(x)
y <- matrix(x[, 1:(nobj - 1)], nrow(x))
z <- matrix(x[, nobj:n], nrow(x))
g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
tmp <- t(apply(y, 1, cumprod))
tmp <- cbind(t(apply(tmp, 1, rev)), 1)
tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
f <- tmp * tmp2 * 0.5 * (1 + g)
return(f)

}

#Define uniformly distributed reference points.

rmoo_Mutation 41

ref_points <- generate_reference_points(3,12)

#Not Run
Not run:
result <- rmoo(type = "real-valued",

fitness = dtlz1,
algorithm = "NSGA-III",
lower = c(0,0,0),
upper = c(1,1,1),
popSize = 92,
nObj = 3,
reference_dirs = ref_points,
monitor = FALSE,
maxiter = 500)

End(Not run)

#Example 3
#Two Objectives - Real Valued with Preference-guided
zdt2 <- function (x)
{

if (is.null(dim(x))) {
x <- matrix(x, nrow = 1)

}
n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - (x[, 1]/g)^2)))

}

#Define uniformly distributed reference points.
ref_points <- rbind(c(1.0, 0.0), c(0.0, 1.0), c(0.5, 0.5))

#Not run
Not run:
result <- rmoo(type = "real-valued",

fitness = zdt2,
algorithm = "R-NSGA-II",
lower = c(0,0),
upper = c(1,1),
reference_dirs = ref_points,
popSize = 92,
nObj = 2,
monitor = FALSE,
maxiter = 500)

End(Not run)

rmoo_Mutation Mutation operators in non-dominated genetic algorithms

42 rmoo_Population

Description

Functions implementing mutation non-dominated genetic operator.

Usage

rmoobin_raMutation(object, parent)

rmooreal_raMutation(object, parent)
rmooreal_polMutation(object, parent, nm = 0.20, indpb = 0.2)

rmooperm_simMutation(object, parent)

Arguments

object An object of class "nsga", "nsga2" or "nsga3" usually resulting from a call to
function nsga, nsga2, nsga3.

parent A vector of values for the parent from the current population where mutation
should occur.

nm Parameters of genetic operators.
indpb Parameters.

Value

Return a vector of values containing the mutated string.

Author(s)

Francisco Benitez

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

rmoo_Population Population initialization in non-dominated genetic algorithms

Description

Functions for creating a random initial population to be used in non-dominated genetic algorithms.

Usage

rmoobin_Population(object)

rmooreal_Population(object)

rmooperm_Population(object)

rmoo_Selection 43

Arguments

object An object of class nsga-class, nsga2-class or nsga3-class.

Details

rmoobin_Population generates a random population of object@nBits binary values;

rmooreal_Population generates a random (uniform) population of real values in the range [object@lower,
object@upper];

rmooperm_Population generates a random (uniform) population of integer values in the range
[object@lower, object@upper].

Value

Return a matrix of dimension object@popSize times the number of decision variables.

Author(s)

Francisco Benitez

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga, nsga2 and nsga3

rmoo_Selection Selection operators in non-dominated genetic algorithms

Description

Functions implementing selection non-dominated genetic operator.

Usage

rmoo_lrSelection(object, r, q)
rmoo_tourSelection(object, k = 2, ...)

rmoobin_lrSelection(object, r, q)
rmoobin_tourSelection(object, k = 2, ...)

rmooreal_lrSelection(object, r, q)
rmooreal_tourSelection(object, k = 2, ...)

rmooperm_lrSelection(object, r, q)
rmooperm_tourSelection(object, k = 2, ...)

44 rnsga2

Arguments

object An object of class "nsga", "nsga2" or "nsga3", usually resulting from a call to
function nsga, nsga2 or nsga3.

r A tuning parameter for the specific selection operator.

q A tuning parameter for the specific selection operator.

k A tuning parameter for the specific selection operator.

... Further arguments passed to or from other methods.

Value

Return a list with two elements:

population a matrix of dimension object@popSize times the number of decision variables
containing the selected individuals or strings;

fitness a vector of length object@popSize containing the fitness values for the selected
individuals.

Author(s)

Francisco Benitez

References

Scrucca, L. (2017) On some extensions to ’GA’ package: hybrid optimisation, parallelisation and
islands evolution. The R Journal, 9/1, 187-206, doi: 10.32614/RJ-2017-008.

See Also

nsga(), nsga2() and nsga3()

rnsga2 Reference Point Based Non-Dominated Sorting in Genetic Algorithms
II

Description

Minimization of a fitness function using reference point based non-dominated sorting genetic algo-
rithms - II (R-NSGA-IIs). Multiobjective evolutionary algorithms

rnsga2 45

Usage

rnsga2(
type = c("binary", "real-valued", "permutation"),
fitness,
...,
lower,
upper,
nBits,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
reference_dirs = NULL,
epsilon = 0.001,
normalization = c("ever", "front", "no"),
extreme_points_as_ref_dirs = FALSE,
weights = NULL,
popSize = 50,
nObj = NULL,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
parallel = FALSE,
monitor = if (interactive()) rmooMonitor else FALSE,
summary = FALSE,
seed = NULL

)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision
variables. Possible values are:

’binary’ for binary representations of decision variables.
’real-valued’ for optimization problems where the decision variables are floating-

point representations of real numbers.
’permutation’ for problems that involves reordering of a list of objects.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describing
its ’fitness’.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search

lower a vector of length equal to the decision variables providing the lower bounds of
the search space in case of real-valued or permutation encoded optimizations.

46 rnsga2

upper a vector of length equal to the decision variables providing the upper bounds of
the search space in case of real-valued or permutation encoded optimizations.

nBits a value specifying the number of bits to be used in binary encoded optimizations

population an R function for randomly generating an initial population. See rmoo_Population()
for available functions.

selection an R function performing selection, i.e. a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See rmoo_Selection() for available functions.

crossover an R function performing crossover, i.e. a function which forms offsprings by
combining part of the genetic information from their parents. See rmoo_Crossover()
for available functions.

mutation an R function performing mutation, i.e. a function which randomly alters the
values of some genes in a parent chromosome. See rmoo_Mutation() for avail-
able functions.

reference_dirs Function to generate reference points using Das and Dennis approach or matrix
with supplied reference points.

epsilon controls the extent of obtained solutions by grouping all solutions that have a
normalized difference sum in objective values of epsilon or less.

normalization of the ideal points and nadir. They can be:

’ever’ .
’front’ .
’no’ .

extreme_points_as_ref_dirs

flag to use extreme points as reference points.

weights vector specifies the importance of one objective function over the other, by de-
fault all objectives have equal weights.

popSize the population size.

nObj number of objective in the fitness function.

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

maxiter the maximum number of iterations to run before the NSGA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the NSGA is stopped

maxFitness the upper bound on the fitness function after that the NSGA search is interrupted.

names a vector of character strings providing the names of decision variables.

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

parallel An optional argument which allows to specify if the NSGA-II should be run
sequentially or in parallel.

rnsga2 47

monitor a logical or an R function which takes as input the current state of the nsga-
class object and show the evolution of the search. By default, for interactive
sessions the function rmooMonitor prints the average and best fitness values at
each iteration. If set to plot these information are plotted on a graphical device.
Other functions can be written by the user and supplied as argument. In non
interactive sessions, by default monitor = FALSE so any output is suppressed.

summary If there will be a summary generation after generation.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a NSGA search. Note that if parallel
computing is required, the doRNG package must be installed.

Details

R-NSGA-II is a meta-heuristic proposed by K. Deb and J. Sundar in 2006. It is a modification of
NSGA-II based on reference points in which the decision-maker supplies one or more preference
points and a weight vector that will guide the solutions towards regions desired by the user.

Value

Returns an object of class rnsga2-class. See rnsga2 for a description of available slots information.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

Kalyanmoy Deb and J. Sundar. 2006. Reference point based multi-objective optimization using
evolutionary algorithms. In Proceedings of the 8th annual conference on Genetic and evolutionary
computation (GECCO ’06). Association for Computing Machinery, New York, NY, USA, 635–642.
doi: 10.1145/1143997.1144112

See Also

nsga(), nsga2(), nsga3()

Examples

#Example
#Two Objectives - Real Valued
zdt1 <- function (x) {
if (is.null(dim(x))) {

x <- matrix(x, nrow = 1)
}
n <- ncol(x)
g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
}

#Define the reference points

48 rnsga2

reference_points = rbind(c(0.2, 0.8), c(0.8, 0.2), c(0.4, 0.5))

#Not run:
Not run:
result <- rnsga2(type = "real-valued",

fitness = zdt1,
lower = c(0,0),
upper = c(1,1),
reference_dirs = reference_points,
popSize = 100,
nObj = 2,
monitor = FALSE,
maxiter = 500,
seed = 45)

End(Not run)

#Example 2
#Three Objectives - Real Valued
dtlz1 <- function (x, nobj = 3){

if (is.null(dim(x))) {
x <- matrix(x, 1)

}
n <- ncol(x)
y <- matrix(x[, 1:(nobj - 1)], nrow(x))
z <- matrix(x[, nobj:n], nrow(x))
g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
tmp <- t(apply(y, 1, cumprod))
tmp <- cbind(t(apply(tmp, 1, rev)), 1)
tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
f <- tmp * tmp2 * 0.5 * (1 + g)
return(f)

}

#Define the reference points
reference_points <- rbind(c(1.0, 0.5, 0.0), c(0.0, 0.5, 1.0), c(0.5, 0.5, 0.5))

#Not run:
Not run:
result <- rnsga2(type = "real-valued",

fitness = dtlz1,
lower = c(0,0,0),
upper = c(1,1,1),
reference_dirs = reference_points,
popSize = 92,
nObj = 3,
monitor = FALSE,
maxiter = 500)

End(Not run)

rnsga2-class 49

rnsga2-class Class ’rnsga2’

Description

The class ’rnsga2’ is instantiated within the execution of rmoo and will be returned as a result of it.
All data generated during execution will be stored in it.

Slots

crowdingDistance Crowding-comparison approach to estimate of the perimeter of the cuboid
formed by using the nearest neighbors as the vertices.

reference_points R-NSGA-II uses a set of reference points defined by the user to ensure diver-
sity in obtained solutions.

extreme_points are selected using the ASF in the (PerformScalarizing()). Necessary in the
nadir point generation.

smin Index used to obtain the extreme points.

Examples

showClass('rnsga2')

scale_reference_directions

Scale Reference Points

Description

A implementation of Das and Dennis’s Reference Points Generation.

Usage

scale_reference_directions(ref_dirs, scaling)

Arguments

ref_dirs, scaling
where ’ref_dirs’ are the reference points generated and ’scaling’ are the scale on
which the points are distributed.

Details

The implemented Reference Point Generation is based on the Das and Dennis’s systematic approach
that places points on a normalized hyper-plane which is equally inclined to all objective axes and
has an intercept of one on each axis.

50 sharing

Value

A matrix with rescaled reference points uniformly distributed.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8,
pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567.

See Also

generate_reference_points() and get_fixed_rowsum_integer_matrix()

sharing Calculation of Dummy Fitness

Description

Calculate of sharing distance and dummy fitness

Usage

sharing(object)

Arguments

object An object of class ’nsga’, usually resulting from a call to function nsga. Fitness
Function Objective Numbers.

Details

The sharing distance operator guides the selection process at the various stages of the algorithm
toward a uniformly spread-out Pareto-optimal front

Value

A vector with the dummy fitness.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

References

N. Srinivas and K. Deb, ’Multiobjective Optimization Using Nondominated Sorting in Genetic Al-
gorithms,’ in Evolutionary Computation, vol. 2, no. 3, pp. 221-248, Sept. 1994, doi: 10.1162/evco.1994.2.3.221.

summary 51

See Also

non_dominated_fronts()

summary Methods for Function ’summary’ in Package ’rmoo’

Description

Method used to summarize the results of the evaluations, passing additional arguments in the sum-
mary method the performance metrics is evaluated.

Usage

summary(object, ...)

S4 method for signature 'nsga'
summary(object, ...)

S4 method for signature 'nsga1'
summary(object, ...)

S4 method for signature 'nsga2'
summary(object, ...)

S4 method for signature 'nsga3'
summary(object, ...)

Arguments

object Objects of either class nsga1, nsga2, or nsga3.

... other arguments passed on to methods. Passing "reference_dirs" as argu-
ments will evaluate the performance metrics Hypervolumen, Generational Dis-
tance, and Inverse Generational Distance.

Value

A summary of the values resulting from the execution of an algorithm.

Author(s)

Francisco Benitez <benitezfj94@gmail.com>

52 update_points

Examples

Where 'out' is an object of class nsga1, nsga2, or nsga3
#
summary(out)
#
For the evaluation of the metrics, pass the reference point
#
ref_points <- generate_reference_points(3,12)
summary(out, reference_dirs = ref_points)

update_points Adaptive normalization of population members

Description

Functions to scalarize the members of the population to locate them in a normalized hyperplane,
finding the ideal point, nadir point, worst point and the extreme points.

Usage

UpdateIdealPoint(object, nObj)
UpdateWorstPoint(object, nObj)
PerformScalarizing(population, fitness, smin, extreme_points, ideal_point)
get_nadir_point(object)

Arguments

object An object of class "nsga3".

nObj numbers of objective values of the function to evaluate.

population individuals of the population until last front.

fitness objective values of the population until last front.

smin Achievement Escalation Function Index.

extreme_points Extreme points of the previous generation to upgrade.

ideal_point Ideal point of the current generation to translate objectives.

Value

Return scalarized objective values in a normalized hyperplane.

Author(s)

Francisco Benitez

update_points 53

References

J. Blank and K. Deb, "Pymoo: Multi-Objective Optimization in Python," in IEEE Access, vol. 8,
pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567.

K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-
Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints," in
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi:
10.1109/TEVC.2013.2281535.

Index

∗ datasets
kroA100, 11
kroB100, 11
kroC100, 12

algorithm-class, 3
associate, 3
associate_to_niches (associate), 3
associate_to_niches(), 14

compute_niche_count (associate), 3
compute_perpendicular_distance

(associate), 3
crowding_distance, 4

generate_reference_points, 5
generate_reference_points(), 10, 34, 50
generational_distance

(performance_metrics), 29
get_fixed_rowsum_integer_matrix, 10
get_fixed_rowsum_integer_matrix(), 5,

34, 50
get_nadir_point (update_points), 52
getCrowdingDistance, 6
getCrowdingDistance,nsga2-method

(getCrowdingDistance), 6
getDummyFitness, 6
getDummyFitness,nsga1-method

(getDummyFitness), 6
getFitness, 7
getFitness,nsga,nsga-method

(getPopulation), 9
getFitness,nsga-method (getPopulation),

9
getMetrics, 8
getMetrics,nsga,nsga-method

(getMetrics), 8
getMetrics,nsga-method (getMetrics), 8
getPopulation, 9

getPopulation,nsga,nsga-method
(getPopulation), 9

getPopulation,nsga-method
(getPopulation), 9

kroA100, 11
kroB100, 11
kroC100, 12

modifiedCrowdingDistance, 12

niching, 13
non_dominated_fronts, 14
non_dominated_fronts(), 4, 5, 10, 51
nsga, 15, 36, 37, 42–44
nsga(), 15, 22, 26, 37, 38, 44, 47
nsga-class, 18
nsga1, 7, 9, 17, 18, 30, 32, 33, 51
nsga1-class, 19
nsga2, 6, 7, 9, 18, 20, 22, 30, 32, 33, 36, 37,

39, 42–44, 51
nsga2(), 15, 17, 26, 35, 37–40, 44, 47
nsga2-class, 23
nsga3, 7, 9, 18, 24, 26, 30, 32, 33, 36, 37, 39,

42–44, 51
nsga3(), 15, 17, 22, 35, 37–40, 44, 47
nsga3-class, 27
numberOrNAOrMatrix-class, 28

performance_metrics, 29
PerformScalarizing (update_points), 52
PerformScalarizing(), 14, 28, 49
plot, 30
plot,nsga,missing (plot), 30
plot,nsga,missing-method (plot), 30
plot,nsga1,missing-method (plot), 30
plot,nsga1-method (plot), 30
plot,nsga2,missing-method (plot), 30
plot,nsga2-method (plot), 30
plot,nsga3,missing-method (plot), 30

54

INDEX 55

plot,nsga3-method (plot), 30
plot,rnsga2,missing-method (plot), 30
plot,rnsga2-method (plot), 30
print, 31
print,nsga,missing-method (print), 31
print,nsga-method (print), 31
print,nsga1-method (print), 31
print,nsga3-method (print), 31
progress, 32
progress,nsga,nsga-method (progress), 32
progress,nsga-method (progress), 32
progress,nsga1-method (progress), 32
progress,nsga2-method (progress), 32
progress,nsga3-method (progress), 32

reference_point_multi_layer, 33
rmoo (rmoo_main), 38
rmoo-main,rmoo-function (rmoo_main), 38
rmoo_Crossover, 37
rmoo_Crossover(), 16, 21, 25, 46
rmoo_lrSelection (rmoo_Selection), 43
rmoo_main, 38
rmoo_Mutation, 41
rmoo_Mutation(), 16, 21, 25, 46
rmoo_Population, 42
rmoo_Population(), 16, 21, 25, 46
rmoo_Selection, 43
rmoo_Selection(), 16, 21, 25, 46
rmoo_spCrossover (rmoo_Crossover), 37
rmoo_tourSelection (rmoo_Selection), 43
rmoobin_lrSelection (rmoo_Selection), 43
rmoobin_Population (rmoo_Population), 42
rmoobin_raMutation (rmoo_Mutation), 41
rmoobin_spCrossover (rmoo_Crossover), 37
rmoobin_tourSelection (rmoo_Selection),

43
rmooControl, 34
rmooMonitor, 36
rmooperm_lrSelection (rmoo_Selection),

43
rmooperm_oxCrossover (rmoo_Crossover),

37
rmooperm_Population (rmoo_Population),

42
rmooperm_simMutation (rmoo_Mutation), 41
rmooperm_tourSelection

(rmoo_Selection), 43
rmooreal_lrSelection (rmoo_Selection),

43

rmooreal_polMutation (rmoo_Mutation), 41
rmooreal_Population (rmoo_Population),

42
rmooreal_raMutation (rmoo_Mutation), 41
rmooreal_sbxCrossover (rmoo_Crossover),

37
rmooreal_spCrossover (rmoo_Crossover),

37
rmooreal_tourSelection

(rmoo_Selection), 43
rnsga2, 39, 44, 47
rnsga2(), 13, 35, 38–40
rnsga2-class, 49

scale_reference_directions, 49
setClassUnion(), 28
sharing, 50
summary, 51
summary,nsga,nsga-method (summary), 51
summary,nsga-method (summary), 51
summary,nsga1-method (summary), 51
summary,nsga2-method (summary), 51
summary,nsga3-method (summary), 51

update_points, 52
UpdateIdealPoint (update_points), 52
UpdateWorstPoint (update_points), 52

	algorithm-class
	associate
	crowding_distance
	generate_reference_points
	getCrowdingDistance
	getDummyFitness
	getFitness
	getMetrics
	getPopulation
	get_fixed_rowsum_integer_matrix
	kroA100
	kroB100
	kroC100
	modifiedCrowdingDistance
	niching
	non_dominated_fronts
	nsga
	nsga-class
	nsga1-class
	nsga2
	nsga2-class
	nsga3
	nsga3-class
	numberOrNAOrMatrix-class
	performance_metrics
	plot
	print
	progress
	reference_point_multi_layer
	rmooControl
	rmooMonitor
	rmoo_Crossover
	rmoo_main
	rmoo_Mutation
	rmoo_Population
	rmoo_Selection
	rnsga2
	rnsga2-class
	scale_reference_directions
	sharing
	summary
	update_points
	Index

